New Application Center Additions
http://www.maplesoft.com/applications
en-us2015 Maplesoft, A Division of Waterloo Maple Inc.Maplesoft Document SystemFri, 09 Oct 2015 21:41:35 GMTFri, 09 Oct 2015 21:41:35 GMTThe latest content added to the Application Centerhttp://www.mapleprimes.com/images/mapleapps.gifNew Application Center Additions
http://www.maplesoft.com/applications
EscapeTime Fractals
http://www.maplesoft.com/applications/view.aspx?SID=153882&ref=Feed
<P>
The <A HREF="/support/help/Maple/view.aspx?path=Fractals/EscapeTime">Fractals</A> package in Maple makes it easier to create and explore popular fractals, including the Mandelbrot, Julia, Newton, and other time-iterative fractals. The Fractals package can quickly apply various escape time iterative maps over rectangular regions in the complex plane, the results of which consist of images that approximate well-known fractal sets. In the following application, you can explore escape time fractals by manipulating parameters pertaining to the generation of Mandelbrot, Julia, Newton and Burning Ship fractals.</P>
<P>
<B>Also:</B> You can <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=5690839489576960">interact with this application</A> in the MapleCloud!</P><img src="/view.aspx?si=153882/escapetimefractal.png" alt="EscapeTime Fractals" align="left"/><P>
The <A HREF="/support/help/Maple/view.aspx?path=Fractals/EscapeTime">Fractals</A> package in Maple makes it easier to create and explore popular fractals, including the Mandelbrot, Julia, Newton, and other time-iterative fractals. The Fractals package can quickly apply various escape time iterative maps over rectangular regions in the complex plane, the results of which consist of images that approximate well-known fractal sets. In the following application, you can explore escape time fractals by manipulating parameters pertaining to the generation of Mandelbrot, Julia, Newton and Burning Ship fractals.</P>
<P>
<B>Also:</B> You can <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=5690839489576960">interact with this application</A> in the MapleCloud!</P>153882Fri, 25 Sep 2015 04:00:00 ZMaplesoftMaplesoftMaplets de sudoku GSudoku5M et SudokuE8f-L
http://www.maplesoft.com/applications/view.aspx?SID=153753&ref=Feed
<p>Les 2 interfaces pour le sudoku généralisé à régions n*m</p>
<p>(on peut insérer e et r dans rectangle rouge de la maplet GSudoku5L pour effacer et avoir la réponse)</p>
<p>(on peut utiliser ds4windows pour jouer avec une manette Dualshock 4 à GSudoku5M en utilisant "Alt+key"</p><img src="/view.aspx?si=153753/CaptGSudoku5h.JPG" alt="Maplets de sudoku GSudoku5M et SudokuE8f-L" align="left"/><p>Les 2 interfaces pour le sudoku généralisé à régions n*m</p>
<p>(on peut insérer e et r dans rectangle rouge de la maplet GSudoku5L pour effacer et avoir la réponse)</p>
<p>(on peut utiliser ds4windows pour jouer avec une manette Dualshock 4 à GSudoku5M en utilisant "Alt+key"</p>153753Fri, 18 Sep 2015 04:00:00 Zxavier cormierxavier cormierThe Classic SIR Model
http://www.maplesoft.com/applications/view.aspx?SID=153877&ref=Feed
<P>This interactive application explores the classical SIR model for the spread of disease, which assumes that a population can be divided into three distinct compartments - S is the proportion of susceptibles, I is the proportion of infected persons and R is the proportion of persons that have recovered from infection and are now immune against the disease.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=4837052487041024">View and interact with this app in the MapleCloud!</A></P><img src="/view.aspx?si=153877/sir_classic.png" alt="The Classic SIR Model" align="left"/><P>This interactive application explores the classical SIR model for the spread of disease, which assumes that a population can be divided into three distinct compartments - S is the proportion of susceptibles, I is the proportion of infected persons and R is the proportion of persons that have recovered from infection and are now immune against the disease.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=4837052487041024">View and interact with this app in the MapleCloud!</A></P>153877Wed, 16 Sep 2015 04:00:00 ZGünter EdenharterGünter EdenharterThe SIR model with births and deaths
http://www.maplesoft.com/applications/view.aspx?SID=153878&ref=Feed
<P>This interactive application explores a variation of the classic SIR model for the spread of disease. The classical SIR model assumes that a population can be divided into three distinct compartments: S is the proportion of susceptibles, I is the proportion of infected persons and R is the proportion of persons that have recovered from infection and are now immune against the disease. One extension to the classic SIR model is to add births and deaths to the model. Thus there is an inflow of new susceptibles and an outflow from all three compartments.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=6584880737550336">View and interact with this app in the MapleCloud!</A></P><img src="/view.aspx?si=153878/sir_births_deaths.png" alt="The SIR model with births and deaths" align="left"/><P>This interactive application explores a variation of the classic SIR model for the spread of disease. The classical SIR model assumes that a population can be divided into three distinct compartments: S is the proportion of susceptibles, I is the proportion of infected persons and R is the proportion of persons that have recovered from infection and are now immune against the disease. One extension to the classic SIR model is to add births and deaths to the model. Thus there is an inflow of new susceptibles and an outflow from all three compartments.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=6584880737550336">View and interact with this app in the MapleCloud!</A></P>153878Wed, 16 Sep 2015 04:00:00 ZGünter EdenharterGünter EdenharterThe SEIR model with births and deaths
http://www.maplesoft.com/applications/view.aspx?SID=153879&ref=Feed
<P>This interactive application explores the SEIR model for the spread of disease. The SEIR model is an extension of the classical SIR (Susceptibles, Infected, Recovered) model, where a fourth compartment is added that contains exposed persons which are infected but are not yet infectious. The SEIR (Susceptibles, Exposed, Infectious, Recovered) model as presented here covers also births and deaths.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=6407056173039616">View and interact with this app in the MapleCloud!</A></P><img src="/view.aspx?si=153879/seir.png" alt="The SEIR model with births and deaths" align="left"/><P>This interactive application explores the SEIR model for the spread of disease. The SEIR model is an extension of the classical SIR (Susceptibles, Infected, Recovered) model, where a fourth compartment is added that contains exposed persons which are infected but are not yet infectious. The SEIR (Susceptibles, Exposed, Infectious, Recovered) model as presented here covers also births and deaths.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=6407056173039616">View and interact with this app in the MapleCloud!</A></P>153879Wed, 16 Sep 2015 04:00:00 ZGünter EdenharterGünter EdenharterQuotient Polynomial Rings by Maple
http://www.maplesoft.com/applications/view.aspx?SID=153872&ref=Feed
Quotient polynomial rings over the infinite field containing ℚ are involved. The computations concern the univariate polynomial rings and the multivariate polynomial rings in two variables. In both cases a vector space basis for the quotient is constructed. The case of of several variables includes cases of infinite dimensions.We shall restrict ourselves to the finite computations. Ring operations of addition and multiplication on the quotients are computed as well.
Goebner basis is used and the computations are carried out in Maple 13.<img src="/view.aspx?si=153872/0038a244bd8b097c72d4ef733ddf7f8c.gif" alt="Quotient Polynomial Rings by Maple" align="left"/>Quotient polynomial rings over the infinite field containing ℚ are involved. The computations concern the univariate polynomial rings and the multivariate polynomial rings in two variables. In both cases a vector space basis for the quotient is constructed. The case of of several variables includes cases of infinite dimensions.We shall restrict ourselves to the finite computations. Ring operations of addition and multiplication on the quotients are computed as well.
Goebner basis is used and the computations are carried out in Maple 13.153872Sat, 12 Sep 2015 04:00:00 ZKahtan H. AlzubaidyKahtan H. AlzubaidyMaple Implementation of the Secure Transport Encryption Scheme
http://www.maplesoft.com/applications/view.aspx?SID=153863&ref=Feed
An easy-to-use interactive Maple implementation of transport encryption scheme has been presented. It allows to encrypt any file with arbitrary extension stored in the used computer system and in portable memory devices. The encrypted file may contain all 7-bit characters. Therefore, the encrypted file can be securely transmitted over the internet as an e-mail enclosure. The application encrypts also the name of the plaintext file: this way, the kind of content of the plaintext file is hidden. The encrypted file is saved in the same folder as the plaintext file. On encryption/decryption in the GUI Text Area the user will see an exhaustive information about the performed task. On decryption, the encrypted file is removed. The presented applications sm128b.mw must have permission to save and remove the processed files. It is worth to know that the secret key in the application is embedded. Thus, any user can embed his own secret key in the application in many ways.<img src="/view.aspx?si=153863/transport.png" alt="Maple Implementation of the Secure Transport Encryption Scheme" align="left"/>An easy-to-use interactive Maple implementation of transport encryption scheme has been presented. It allows to encrypt any file with arbitrary extension stored in the used computer system and in portable memory devices. The encrypted file may contain all 7-bit characters. Therefore, the encrypted file can be securely transmitted over the internet as an e-mail enclosure. The application encrypts also the name of the plaintext file: this way, the kind of content of the plaintext file is hidden. The encrypted file is saved in the same folder as the plaintext file. On encryption/decryption in the GUI Text Area the user will see an exhaustive information about the performed task. On decryption, the encrypted file is removed. The presented applications sm128b.mw must have permission to save and remove the processed files. It is worth to know that the secret key in the application is embedded. Thus, any user can embed his own secret key in the application in many ways.153863Wed, 09 Sep 2015 04:00:00 ZCzeslaw KoscielnyCzeslaw KoscielnyFitting Wave Height Data to a Probability Distribution
http://www.maplesoft.com/applications/view.aspx?SID=153864&ref=Feed
<p>The University of Maine records real-time accelerometer data from buoys deployed in the Gulf of Maine and Caribbean (http://gyre.umeoce.maine.edu/buoyhome.php). The data can be downloaded from their website, and includes the significant wave height recorded at regular intervals for the last few months.</p>
<p>This application:</p>
<ul>
<li>downloads accelerometer data for Buoy PR206 (located just off the coast of Puerto Rico at a latitude of 18° 28.46' N and a longitude of 66° 5.94' W),</li>
</ul>
<ul>
<li>fits the significant wave height to a Weibull distribution via two methods: maximum likelihood estimation and moment matching,</li>
</ul>
<ul>
<li>and plots the fitted distributions on top of a histogram of the experimental data</li>
</ul>
<p>The location of buoy PR206 is given in a Google Maps component.</p><img src="/view.aspx?si=153864/distribution.jpg" alt="Fitting Wave Height Data to a Probability Distribution" align="left"/><p>The University of Maine records real-time accelerometer data from buoys deployed in the Gulf of Maine and Caribbean (http://gyre.umeoce.maine.edu/buoyhome.php). The data can be downloaded from their website, and includes the significant wave height recorded at regular intervals for the last few months.</p>
<p>This application:</p>
<ul>
<li>downloads accelerometer data for Buoy PR206 (located just off the coast of Puerto Rico at a latitude of 18° 28.46' N and a longitude of 66° 5.94' W),</li>
</ul>
<ul>
<li>fits the significant wave height to a Weibull distribution via two methods: maximum likelihood estimation and moment matching,</li>
</ul>
<ul>
<li>and plots the fitted distributions on top of a histogram of the experimental data</li>
</ul>
<p>The location of buoy PR206 is given in a Google Maps component.</p>153864Wed, 09 Sep 2015 04:00:00 ZSamir KhanSamir KhanUnit Root Parameter Estimation
http://www.maplesoft.com/applications/view.aspx?SID=153861&ref=Feed
We will in this application use daily and monthly data from the SP-500 Index to calculate the unit root coefficients which will then be used for forecasting purposes<img src="/applications/images/app_image_blank_lg.jpg" alt="Unit Root Parameter Estimation" align="left"/>We will in this application use daily and monthly data from the SP-500 Index to calculate the unit root coefficients which will then be used for forecasting purposes153861Wed, 02 Sep 2015 04:00:00 ZMarcus DavidssonMarcus DavidssonTips and Techniques: Working with Finitely Presented Groups in Maple
http://www.maplesoft.com/applications/view.aspx?SID=153852&ref=Feed
This Tips and Techniques article introduces Maple's facilities for working with finitely presented groups. A finitely presented group is a group defined by means of a finite number of generators, and a finite number of defining relations. It is one of the principal ways in which a group may be represented on the computer, and is virtually the only representation that effectively allows us to compute with many infinite groups.<img src="/view.aspx?si=153852/thumb.jpg" alt="Tips and Techniques: Working with Finitely Presented Groups in Maple" align="left"/>This Tips and Techniques article introduces Maple's facilities for working with finitely presented groups. A finitely presented group is a group defined by means of a finite number of generators, and a finite number of defining relations. It is one of the principal ways in which a group may be represented on the computer, and is virtually the only representation that effectively allows us to compute with many infinite groups.153852Tue, 25 Aug 2015 04:00:00 ZMaplesoftMaplesoftOptimal Income tax from a Simple Socialist Model
http://www.maplesoft.com/applications/view.aspx?SID=153853&ref=Feed
We will in this application discuss optimal taxation from a simple socialist model. We will also run some regressions on data from the 2015 Index of Economic Freedom<img src="/view.aspx?si=153853/Che_Guevara.jpg" alt="Optimal Income tax from a Simple Socialist Model" align="left"/>We will in this application discuss optimal taxation from a simple socialist model. We will also run some regressions on data from the 2015 Index of Economic Freedom153853Tue, 25 Aug 2015 04:00:00 ZMarcus DavidssonMarcus DavidssonTopology Package-1
http://www.maplesoft.com/applications/view.aspx?SID=153849&ref=Feed
<p ><strong>Topology Tools<br />
Department of Mathematics, Faculty of Science, University of Benghazi, Libya<br /></strong>
Taha Guma el turki<br /><br />
e-mail: taha1978_2002@yahoo.com<br /><br />
The procedures in this application are related to point set topology , and they compute many new issues as the following :-<br />1) Checking Normality ,all normal spaces over a given set and their number . <br />2) Minimal Basic open set , minimal basis.<br /> 3) Number of weakly-dimensional topologies .<br /> 4) Check if two topologies are homeomorphic or not .<br /> 5) Disconnected spaces and their number. <br /> 6) Disjoint proper open sets , disjoint proper closed sets , proper sets . <br />7) Neither open nor closed sets <br />8) The user can compute the special points in more flexible method than the method in[1].
<br /><strong>Note:-<br /></strong><br />For the following procedures the user have to enter ”n” the number of set points :-<br /> 1) All Extremal Topologies(n) ; # n the number of points.<br /><br /> 2) Numberof Extremal Topologies(n);<br /><br /> 3) AllNonTrivialMinimalTopologies(n); <br /><br /> 4) NumberofNonTrivialMinimalTopologies(n);<br /><br /> <strong>References:-</strong><br /><br /> [1] http://www.maplesoft.com/applications/view.aspx?SID=145571<br /><br /> [2] http://www.maplesoft.com/applications/view.aspx?SID=153617 <br /> <br />[3] http://www.maplesoft.com/applications/view.aspx?SID=150631<br /><br /> [4] http://www.maplesoft.com/applications/view.aspx?SID=4122.</p><img src="/applications/images/app_image_blank_lg.jpg" alt="Topology Package-1" align="left"/><p ><strong>Topology Tools<br />
Department of Mathematics, Faculty of Science, University of Benghazi, Libya<br /></strong>
Taha Guma el turki<br /><br />
e-mail: taha1978_2002@yahoo.com<br /><br />
The procedures in this application are related to point set topology , and they compute many new issues as the following :-<br />1) Checking Normality ,all normal spaces over a given set and their number . <br />2) Minimal Basic open set , minimal basis.<br /> 3) Number of weakly-dimensional topologies .<br /> 4) Check if two topologies are homeomorphic or not .<br /> 5) Disconnected spaces and their number. <br /> 6) Disjoint proper open sets , disjoint proper closed sets , proper sets . <br />7) Neither open nor closed sets <br />8) The user can compute the special points in more flexible method than the method in[1].
<br /><strong>Note:-<br /></strong><br />For the following procedures the user have to enter ”n” the number of set points :-<br /> 1) All Extremal Topologies(n) ; # n the number of points.<br /><br /> 2) Numberof Extremal Topologies(n);<br /><br /> 3) AllNonTrivialMinimalTopologies(n); <br /><br /> 4) NumberofNonTrivialMinimalTopologies(n);<br /><br /> <strong>References:-</strong><br /><br /> [1] http://www.maplesoft.com/applications/view.aspx?SID=145571<br /><br /> [2] http://www.maplesoft.com/applications/view.aspx?SID=153617 <br /> <br />[3] http://www.maplesoft.com/applications/view.aspx?SID=150631<br /><br /> [4] http://www.maplesoft.com/applications/view.aspx?SID=4122.</p>153849Sat, 22 Aug 2015 04:00:00 ZTaha Guma el turkiTaha Guma el turkiMaple Implementation of Transport Encryption Scheme Using the Secret Key of Length 479 Bits
http://www.maplesoft.com/applications/view.aspx?SID=153841&ref=Feed
An easy-to-use Maple implementation of transport encryption has been presented. It allows encrypting any file with arbitrary extension stored in the used computer system. The encrypted file contains space, alphabetic and decimal digit characters and the following special characters !#$%&'()*+,-./:;<=>?@[]^_`{|}~. These 93 printable characters can be defined by the set {32, 33, 35, seq(i, i=36 .. 91), seq(i, i=93 .. 126)} of byte values. Therefore, the encrypted file can be not only securely transmitted over the internet as an e-mail enclosure, but also protected effectively against unauthorized access. The application encrypts the name of the plaintext file as well: this way, the kind of content of the plaintext file is hidden. The encrypted file is saved in the same folder as the plaintext file. The size of the encrypted file is about 22.3% greater than the size of the plaintext file. On encryption/decryption in the GUI Text Area the user will see exhaustive information about the performed task. On decryption, the encrypted file is removed. It is worth knowing that the secret key in the application is embedded. Thus, any user can install his own secret key in the application in many ways. For example, he can change the value of the variable skc and the value of the variable seed in the procedures fne and fnd. The presented applications fed479k.mw must have permission to save and to remove the processed files. For security reason the application worksheet fed479k.mw ought to be stored in the meticulously watched over pen drive.<img src="/view.aspx?si=153841/im.jpg" alt="Maple Implementation of Transport Encryption Scheme Using the Secret Key of Length 479 Bits" align="left"/>An easy-to-use Maple implementation of transport encryption has been presented. It allows encrypting any file with arbitrary extension stored in the used computer system. The encrypted file contains space, alphabetic and decimal digit characters and the following special characters !#$%&'()*+,-./:;<=>?@[]^_`{|}~. These 93 printable characters can be defined by the set {32, 33, 35, seq(i, i=36 .. 91), seq(i, i=93 .. 126)} of byte values. Therefore, the encrypted file can be not only securely transmitted over the internet as an e-mail enclosure, but also protected effectively against unauthorized access. The application encrypts the name of the plaintext file as well: this way, the kind of content of the plaintext file is hidden. The encrypted file is saved in the same folder as the plaintext file. The size of the encrypted file is about 22.3% greater than the size of the plaintext file. On encryption/decryption in the GUI Text Area the user will see exhaustive information about the performed task. On decryption, the encrypted file is removed. It is worth knowing that the secret key in the application is embedded. Thus, any user can install his own secret key in the application in many ways. For example, he can change the value of the variable skc and the value of the variable seed in the procedures fne and fnd. The presented applications fed479k.mw must have permission to save and to remove the processed files. For security reason the application worksheet fed479k.mw ought to be stored in the meticulously watched over pen drive.153841Thu, 13 Aug 2015 04:00:00 ZCzeslaw KoscielnyCzeslaw KoscielnyKnight's Tour
http://www.maplesoft.com/applications/view.aspx?SID=153842&ref=Feed
A knight's tour is a sequence of moves of a knight on a chessboard such that the knight visits every square only once.
This application presents the implementation of this task in Maple.<img src="/view.aspx?si=153842/26f19bd457ac566083dec1b86db8b91b.gif" alt="Knight's Tour" align="left"/>A knight's tour is a sequence of moves of a knight on a chessboard such that the knight visits every square only once.
This application presents the implementation of this task in Maple.153842Thu, 13 Aug 2015 04:00:00 ZDr. Yury ZavarovskyDr. Yury ZavarovskySymmetric Polynomials by Maple
http://www.maplesoft.com/applications/view.aspx?SID=153837&ref=Feed
<p>Procedures are presented in Maple 13 to make computations in symmetric polynomials by using Groebner basis.A simple application to the theory of equations is given.</p><img src="/applications/images/app_image_blank_lg.jpg" alt="Symmetric Polynomials by Maple" align="left"/><p>Procedures are presented in Maple 13 to make computations in symmetric polynomials by using Groebner basis.A simple application to the theory of equations is given.</p>153837Thu, 06 Aug 2015 04:00:00 ZKahtan H. AlzubaidyKahtan H. AlzubaidyApproximation von BESSEL-Funktionen durch FOURIER-Reihen
http://www.maplesoft.com/applications/view.aspx?SID=153835&ref=Feed
Mit Hilfe der Maplesoftware können BESSEL-Funktionen bequem dargestellt werden. Beispielsweise werden BESSEL-Funktionen erster Art für gerade und ungerade Ordnung n diskutiert und durch FOURIER-Reihen beliebiger Gliederanzahl approximiert. Nach dem gleichen Muster können auch BESSEL-Funktionen zweiter Art oder beispielsweise FRESNELsche Integrale approximiert werden.<img src="/view.aspx?si=153835/6d6089d907c5cd7d58f85af2a82d634c.gif" alt="Approximation von BESSEL-Funktionen durch FOURIER-Reihen" align="left"/>Mit Hilfe der Maplesoftware können BESSEL-Funktionen bequem dargestellt werden. Beispielsweise werden BESSEL-Funktionen erster Art für gerade und ungerade Ordnung n diskutiert und durch FOURIER-Reihen beliebiger Gliederanzahl approximiert. Nach dem gleichen Muster können auch BESSEL-Funktionen zweiter Art oder beispielsweise FRESNELsche Integrale approximiert werden.153835Fri, 17 Jul 2015 04:00:00 ZProf. Josef BettenProf. Josef BettenMaple Implementation of Transport Encoding Scheme Using the Base Value Equal to 93
http://www.maplesoft.com/applications/view.aspx?SID=153817&ref=Feed
In the `RFC 4648` document (http://www.rfc-base.org/rfc-4648.html) the commonly used base 64, base 32, and base 16 encoding schemes are decribed. The output file, encoded according to this document, is about 33%, 60% and 100% greater than the input file, respectively. The presented application uses the base value equal to 93, and now the encoded file is only about 22% greater than the input file. The application must have a permission to save and to remove the files processed. It is easy to use - the reader is informed which tasks are being performed for any selected option, namely, he will know the input file size and name, the output file size and name, the encoding/decoding rates.In the `RFC 4648` document (http://www.rfc-base.org/rfc-4648.html) the commonly used base 64, base 32, and base 16 encoding schemes are decribed. The output file, encoded according to this document, is about 33%, 60% and 100% greater than the input file, respectively. The presented application uses the base value equal to 93, and now the encoded file is only about 22% greater than the input file. The application must have a permission to save and to remove the files processed. It is easy to use - the reader is informed which tasks are being performed for any selected option, namely, he will know the input file size and name, the output file size and name, the encoding/decoding rates.153817Thu, 25 Jun 2015 04:00:00 ZCzeslaw KoscielnyCzeslaw KoscielnyRepresentation Triangles for Three Candidate Elections
http://www.maplesoft.com/applications/view.aspx?SID=135757&ref=Feed
<p>This application takes ranking data from a three person election and creates representation triangles that depict the results of the election both numerically and geometrically for a number of different voting systems. The numerical profile makes it straightforward to calculate the results of the election under a number of different systems while the geometric profile displays the procedure line and the approval voting region and specifically the plurality, anti-plurality and Borda count results. </p>
<p>This is an improvement over the first author's earlier, similar application. The geometric profile is rendered as a two-dimensional object and additional election results are made explicit.</p><img src="/view.aspx?si=135757/135757_thumb.jpg" alt="Representation Triangles for Three Candidate Elections" align="left"/><p>This application takes ranking data from a three person election and creates representation triangles that depict the results of the election both numerically and geometrically for a number of different voting systems. The numerical profile makes it straightforward to calculate the results of the election under a number of different systems while the geometric profile displays the procedure line and the approval voting region and specifically the plurality, anti-plurality and Borda count results. </p>
<p>This is an improvement over the first author's earlier, similar application. The geometric profile is rendered as a two-dimensional object and additional election results are made explicit.</p>135757Thu, 11 Jun 2015 04:00:00 ZDr. Joseph KolacinskiDr. Joseph KolacinskiBlutdruckwerte aus Langzeitmessung
http://www.maplesoft.com/applications/view.aspx?SID=153813&ref=Feed
<p>During a period of 24 hours the blood pressure of a patient at the University Hospital Aachen has been measured. Thus, we have a lot of Systole-, Diastole-, and Pulse-Values important for medical doctors teating sick patients. To analyse these "data" the Maple Program 16 has been used.</p><img src="/view.aspx?si=153813/9eba1a814642633a6f07c19980f3a0e8.gif" alt="Blutdruckwerte aus Langzeitmessung" align="left"/><p>During a period of 24 hours the blood pressure of a patient at the University Hospital Aachen has been measured. Thus, we have a lot of Systole-, Diastole-, and Pulse-Values important for medical doctors teating sick patients. To analyse these "data" the Maple Program 16 has been used.</p>153813Thu, 04 Jun 2015 04:00:00 ZProf. Josef Professor BettenProf. Josef Professor BettenSplinefunktion als FOURIER-Reihen
http://www.maplesoft.com/applications/view.aspx?SID=153796&ref=Feed
<p>Zunächst werden experimentelle Daten durch eine kubische <em>Splinefunktion </em>interpoliert. Die stückweise stetige <em>Splinefunktion</em> wird als <em>FOURIER-Reihe </em>dargestellt Dabei wird festgestellt, dass sich die <em>FOURIER-Reihe </em>mit steigender Anzahl der Reihenglieder immer szärker an die <em>Splinefunktion </em>anschmiegt. Bei unendlicher Anzahl der Reihenglieder fällt die <em>FOURIER-Reihe </em>mit der <em>Splinefunktion zusammen.</em></p><img src="/applications/images/app_image_blank_lg.jpg" alt="Splinefunktion als FOURIER-Reihen" align="left"/><p>Zunächst werden experimentelle Daten durch eine kubische <em>Splinefunktion </em>interpoliert. Die stückweise stetige <em>Splinefunktion</em> wird als <em>FOURIER-Reihe </em>dargestellt Dabei wird festgestellt, dass sich die <em>FOURIER-Reihe </em>mit steigender Anzahl der Reihenglieder immer szärker an die <em>Splinefunktion </em>anschmiegt. Bei unendlicher Anzahl der Reihenglieder fällt die <em>FOURIER-Reihe </em>mit der <em>Splinefunktion zusammen.</em></p>153796Mon, 18 May 2015 04:00:00 ZProf. Josef BettenProf. Josef Betten