New Application Center Additions
http://www.maplesoft.com/applications
en-us2017 Maplesoft, A Division of Waterloo Maple Inc.Maplesoft Document SystemSun, 22 Jan 2017 05:48:37 GMTSun, 22 Jan 2017 05:48:37 GMTThe latest content added to the Application Centerhttp://www.mapleprimes.com/images/mapleapps.gifNew Application Center Additions
http://www.maplesoft.com/applications
Polya Theory by Maple
http://www.maplesoft.com/applications/view.aspx?SID=154192&ref=Feed
A few procedures of Maple are written to do computations related to Burnside's theorems and also to Polya's theorems.
The computations are done by using permutation groups.<img src="/applications/images/app_image_blank_lg.jpg" alt="Polya Theory by Maple" align="left"/>A few procedures of Maple are written to do computations related to Burnside's theorems and also to Polya's theorems.
The computations are done by using permutation groups.154192Tue, 29 Nov 2016 05:00:00 ZKahtan H. AlzubaidyKahtan H. AlzubaidyOptimización: Una introducción intuitiva y gráfica
http://www.maplesoft.com/applications/view.aspx?SID=154188&ref=Feed
Se presenta al estudiante una introducción al tema de optimización utilizando un enfoque gráfico, sin la utilización del concepto de derivada.
El primer ejemplo que se proporciona al estudiante en este material recurre a su intuición para comprender las características básicas del problema de optimización. Posteriormente se analizan dos ejemplos más, típicos sobre el mismo tema.<img src="/view.aspx?si=154188/box.PNG" alt="Optimización: Una introducción intuitiva y gráfica" align="left"/>Se presenta al estudiante una introducción al tema de optimización utilizando un enfoque gráfico, sin la utilización del concepto de derivada.
El primer ejemplo que se proporciona al estudiante en este material recurre a su intuición para comprender las características básicas del problema de optimización. Posteriormente se analizan dos ejemplos más, típicos sobre el mismo tema.154188Wed, 09 Nov 2016 05:00:00 ZRanferi GutierrezRanferi GutierrezSolution Analytique Exacte dans un Circuit Eléctronique contenant une Résistance et une Diode
http://www.maplesoft.com/applications/view.aspx?SID=154185&ref=Feed
(Exact Analytical Solution in an electronic circuit containing a resistor and a diode)
<BR><BR>
Dans cette feuille d'application, nous utilisons le logiciel de calcul formel Maple dans la résolution analytique exacte des courants électriques traversant les différentes branches d'un circuit élèctronique. Puis, nous déterminons les expressions analytiques exactes des différences de potentiel aux bornes de tous les éléments du montage. puis nous calculons la résistance dynamique du diode du circuit. Les solutions analytiques proposées sont toutes exprimées en fonction de la fonction de Lambert W. Enfin, nous étudions l'influence de la résistance sur l'expression du courant électrique traversant le circuit élèctronique et sur les expressions des différences de potentiel aux bornes de tous les éléments du montage en faisant animer les solutions en variant la résistance sur un interval.
De la mème manière on étudie l'influence du : courant de saturation, le facteur d'idéalité et la température.
<BR><BR>
-------------------------------------
<BR><BR>
In this application worksheet, we determine the exact analytical solutions for the current flows through the different branches of the electronic circuit . Then, we derive analytical expressions for the voltages at the terminals of all elements in the circuit. Finally, we calculate the dynamical resistances the diode in the circuit. The proposed analytical solutions are all expressed as functions of the Lambert W function. Finally, we study the influence of resistance on the expression of the electric current through the electronic circuit and the expressions of the potential differences across all elements of the assembly by facilitating solutions to vary the resistance on an interval.
Similarly, we study the influence of: saturation current, the ideality factor and temperature.<img src="/view.aspx?si=154185/diode.png" alt="Solution Analytique Exacte dans un Circuit Eléctronique contenant une Résistance et une Diode" align="left"/>(Exact Analytical Solution in an electronic circuit containing a resistor and a diode)
<BR><BR>
Dans cette feuille d'application, nous utilisons le logiciel de calcul formel Maple dans la résolution analytique exacte des courants électriques traversant les différentes branches d'un circuit élèctronique. Puis, nous déterminons les expressions analytiques exactes des différences de potentiel aux bornes de tous les éléments du montage. puis nous calculons la résistance dynamique du diode du circuit. Les solutions analytiques proposées sont toutes exprimées en fonction de la fonction de Lambert W. Enfin, nous étudions l'influence de la résistance sur l'expression du courant électrique traversant le circuit élèctronique et sur les expressions des différences de potentiel aux bornes de tous les éléments du montage en faisant animer les solutions en variant la résistance sur un interval.
De la mème manière on étudie l'influence du : courant de saturation, le facteur d'idéalité et la température.
<BR><BR>
-------------------------------------
<BR><BR>
In this application worksheet, we determine the exact analytical solutions for the current flows through the different branches of the electronic circuit . Then, we derive analytical expressions for the voltages at the terminals of all elements in the circuit. Finally, we calculate the dynamical resistances the diode in the circuit. The proposed analytical solutions are all expressed as functions of the Lambert W function. Finally, we study the influence of resistance on the expression of the electric current through the electronic circuit and the expressions of the potential differences across all elements of the assembly by facilitating solutions to vary the resistance on an interval.
Similarly, we study the influence of: saturation current, the ideality factor and temperature.154185Wed, 26 Oct 2016 04:00:00 ZEL AYDI MHAMEDEL AYDI MHAMEDInteractive Country Data Explorer
http://www.maplesoft.com/applications/view.aspx?SID=154181&ref=Feed
This application allows you to choose a set of countries, and then select three of the more than 50 types of statistical data available for those counties, such as life expectancy, literacy rates, health expenditures, and more. You then can visualize how these factors change over time using a BubblePlot. For example, you can select several countries and then visualize how their overall number of internet users has changed along with their gross domestic product, using the x-y axis, while the bubble size shows relative population sizes.<BR><BR>Related MaplePrimes blog post: <A HREF="http://www.mapleprimes.com/maplesoftblog/203857-An-Interactive-Application-For-Exploring">An Interactive Application for Exploring Country Data</A><img src="/view.aspx?si=154181/countrybubble3.PNG" alt="Interactive Country Data Explorer" align="left"/>This application allows you to choose a set of countries, and then select three of the more than 50 types of statistical data available for those counties, such as life expectancy, literacy rates, health expenditures, and more. You then can visualize how these factors change over time using a BubblePlot. For example, you can select several countries and then visualize how their overall number of internet users has changed along with their gross domestic product, using the x-y axis, while the bubble size shows relative population sizes.<BR><BR>Related MaplePrimes blog post: <A HREF="http://www.mapleprimes.com/maplesoftblog/203857-An-Interactive-Application-For-Exploring">An Interactive Application for Exploring Country Data</A>154181Wed, 19 Oct 2016 04:00:00 ZDaniel SkoogDaniel SkoogVisualizing Multiple Datasets with BubblePlot
http://www.maplesoft.com/applications/view.aspx?SID=154178&ref=Feed
The BubblePlot command can convey information about three dimensions of a multi-dimensional dataset using the horizontal axis, the vertical axis, and point (bubble) size. Moreover, if a dataset is a time series, BubblePlot can generate an animation that shows the movement of data points over a common period of time.
In the following example, datasets containing information on Gross Domestic Product at Power Purchasing Parity, Life Expectancy, and Population are retrieved for selected countries and visualized.<img src="/view.aspx?si=154178/BubblePlot.png" alt="Visualizing Multiple Datasets with BubblePlot" align="left"/>The BubblePlot command can convey information about three dimensions of a multi-dimensional dataset using the horizontal axis, the vertical axis, and point (bubble) size. Moreover, if a dataset is a time series, BubblePlot can generate an animation that shows the movement of data points over a common period of time.
In the following example, datasets containing information on Gross Domestic Product at Power Purchasing Parity, Life Expectancy, and Population are retrieved for selected countries and visualized.154178Mon, 17 Oct 2016 04:00:00 ZDaniel SkoogDaniel SkoogDigitizing mathematics: ODEs, Special Functions and Solutions to Einstein's Equations
http://www.maplesoft.com/applications/view.aspx?SID=154174&ref=Feed
The material below was presented in the <A HREF="https://www.fields.utoronto.ca/programs/scientific/15-16/semantic/">Semantic Representation of Mathematical Knowledge Workshop</A>, February 3-5, 2016 at the Fields Institute, University of Toronto. It shows the approach used for “digitizing mathematical knowledge" regarding Differential Equations, Special Functions and Solutions to Einstein's equations. While for these areas using databases of information helps (for example textbooks frequently contain these sort of databases), these are areas that, at the same time, are very suitable for using algorithmic mathematical approaches, that result in much richer mathematics than what can be hard-coded into a database. The material also focuses on an interesting cherry-picked collection of Maple functionality, that I think is beautiful, not well know, and seldom focused inter-related as here.<BR><BR>
This application is also featured in a <A HREF="http://www.mapleprimes.com/posts/206715-Digitizing-Mathematics-ODEs-Special">MaplePrimes blog post</A>.<img src="/applications/images/app_image_blank_lg.jpg" alt="Digitizing mathematics: ODEs, Special Functions and Solutions to Einstein's Equations" align="left"/>The material below was presented in the <A HREF="https://www.fields.utoronto.ca/programs/scientific/15-16/semantic/">Semantic Representation of Mathematical Knowledge Workshop</A>, February 3-5, 2016 at the Fields Institute, University of Toronto. It shows the approach used for “digitizing mathematical knowledge" regarding Differential Equations, Special Functions and Solutions to Einstein's equations. While for these areas using databases of information helps (for example textbooks frequently contain these sort of databases), these are areas that, at the same time, are very suitable for using algorithmic mathematical approaches, that result in much richer mathematics than what can be hard-coded into a database. The material also focuses on an interesting cherry-picked collection of Maple functionality, that I think is beautiful, not well know, and seldom focused inter-related as here.<BR><BR>
This application is also featured in a <A HREF="http://www.mapleprimes.com/posts/206715-Digitizing-Mathematics-ODEs-Special">MaplePrimes blog post</A>.154174Fri, 07 Oct 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabCalculating the Bulk Modulus of a Fluid
http://www.maplesoft.com/applications/view.aspx?SID=154172&ref=Feed
This application contains a procedure that accepts a temperature, pressure and fluid, and calculates the isothermal bulk modulus using the ThermophysicalData package and numeric derivatives. The procedure is used to demonstrate that the bulk modulus of water is at a maximum at a temperature of 320 K.<img src="/applications/images/app_image_blank_lg.jpg" alt="Calculating the Bulk Modulus of a Fluid" align="left"/>This application contains a procedure that accepts a temperature, pressure and fluid, and calculates the isothermal bulk modulus using the ThermophysicalData package and numeric derivatives. The procedure is used to demonstrate that the bulk modulus of water is at a maximum at a temperature of 320 K.154172Thu, 06 Oct 2016 04:00:00 ZSamir KhanSamir KhanThermodynamic Properties of Ordinary Water Substance for General and Scientific Use
http://www.maplesoft.com/applications/view.aspx?SID=154173&ref=Feed
This Maple Application was developed by Russian National Committee (RNC) of International Association for the Water and Steam(IAPWS). This calculation is based on the "Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use". Detailed information about used equations, constants, range of validity etc is presented in PDF version of IAPWS Release which can be downloaded from IAPWS web site.<img src="/applications/images/app_image_blank_lg.jpg" alt="Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use" align="left"/>This Maple Application was developed by Russian National Committee (RNC) of International Association for the Water and Steam(IAPWS). This calculation is based on the "Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use". Detailed information about used equations, constants, range of validity etc is presented in PDF version of IAPWS Release which can be downloaded from IAPWS web site.154173Thu, 06 Oct 2016 04:00:00 ZKonstantin Orlov<BR>Aung Thu Ya TunKonstantin Orlov<BR>Aung Thu Ya TunThe Gross-Pitaevskii equation and Bogoliubov spectrum
http://www.maplesoft.com/applications/view.aspx?SID=154155&ref=Feed
The spectrum of its solutions of the equation for a quantum system of identical particles, that is the Gross-Pitaevskii equation (GPE) is derived.
<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/200120-Quantum-Mechanics-II">blog post on MaplePrimes</A>.<img src="/view.aspx?si=154155/theoreticalphysics.jpg" alt="The Gross-Pitaevskii equation and Bogoliubov spectrum" align="left"/>The spectrum of its solutions of the equation for a quantum system of identical particles, that is the Gross-Pitaevskii equation (GPE) is derived.
<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/200120-Quantum-Mechanics-II">blog post on MaplePrimes</A>.154155Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabGround state of a quantum system of identical boson particles
http://www.maplesoft.com/applications/view.aspx?SID=154156&ref=Feed
Departing from the Energy of a quantum system of identical boson particles, the field equation, that is the Gross-Pitaevskii equation, is derived.
<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/200109-Quantum-Mechanics-Using-Computer-Algebra">blog post on MaplePrimes</A>.<img src="/view.aspx?si=154156/quantum.jpg" alt="Ground state of a quantum system of identical boson particles" align="left"/>Departing from the Energy of a quantum system of identical boson particles, the field equation, that is the Gross-Pitaevskii equation, is derived.
<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/200109-Quantum-Mechanics-Using-Computer-Algebra">blog post on MaplePrimes</A>.154156Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabComputer Algebra in Theoretical Physics (IOP Webinar)
http://www.maplesoft.com/applications/view.aspx?SID=154157&ref=Feed
Recent advancements in computational physics are illustrated, showing how these techniques can be applied to problems from general relativity, classical mechanics, quantum mechanics, and classical field theory, including the presentation of the digitization of the solutions to Einstein’s field equations shown in the book “Exact Solutions to Einstein’s Field Equations”.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/203574-Computer-Algebra-In-Theoretical-Physics">blog post on MaplePrimes</A>.<img src="/view.aspx?si=154157/theoreticalphysics.jpg" alt="Computer Algebra in Theoretical Physics (IOP Webinar)" align="left"/>Recent advancements in computational physics are illustrated, showing how these techniques can be applied to problems from general relativity, classical mechanics, quantum mechanics, and classical field theory, including the presentation of the digitization of the solutions to Einstein’s field equations shown in the book “Exact Solutions to Einstein’s Field Equations”.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/203574-Computer-Algebra-In-Theoretical-Physics">blog post on MaplePrimes</A>.154157Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabMini-Course: Computer Algebra for Physicists
http://www.maplesoft.com/applications/view.aspx?SID=154158&ref=Feed
This is a course, organized as a guided experience, 2 hours per day during five days, on learning the basics of the Maple language, and on using it to formulate algebraic computations we do in physics with paper and pencil. It is oriented to people not familiar with computer algebra (sections 1-5), as well as to people who are familiar but want to learn more about how to use it in Physics.<img src="/view.aspx?si=154158/physicscourse.PNG" alt="Mini-Course: Computer Algebra for Physicists" align="left"/>This is a course, organized as a guided experience, 2 hours per day during five days, on learning the basics of the Maple language, and on using it to formulate algebraic computations we do in physics with paper and pencil. It is oriented to people not familiar with computer algebra (sections 1-5), as well as to people who are familiar but want to learn more about how to use it in Physics.154158Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabEquivalence problem in General Relativity
http://www.maplesoft.com/applications/view.aspx?SID=154159&ref=Feed
In this presentation, the equivalence problem for Schwarzschild metric in a simple case is formulated and solved to the end using the <A HREF="/support/help/Maple/view.aspx?path=PDEtools">PDEtools</A>, <A HREF="/support/help/Maple/view.aspx?path=physics">Physics</A> and <A HREF="/support/help/maple/view.aspx?path=Physics/Tetrads">Physics:-Tetrads</A> Maple packages.
<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/203426-Equivalence-Problem-In-General-Relativity">blog post on MaplePrimes</A>.<img src="/view.aspx?si=154159/quantum.jpg" alt="Equivalence problem in General Relativity" align="left"/>In this presentation, the equivalence problem for Schwarzschild metric in a simple case is formulated and solved to the end using the <A HREF="/support/help/Maple/view.aspx?path=PDEtools">PDEtools</A>, <A HREF="/support/help/Maple/view.aspx?path=physics">Physics</A> and <A HREF="/support/help/maple/view.aspx?path=Physics/Tetrads">Physics:-Tetrads</A> Maple packages.
<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/203426-Equivalence-Problem-In-General-Relativity">blog post on MaplePrimes</A>.154159Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabTetrads and Weyl scalars in canonical form
http://www.maplesoft.com/applications/view.aspx?SID=154160&ref=Feed
This presentation is about the computation of a canonical form of a tetrad, so that, generally speaking (skipping a technical description) the Weyl scalars are fixed as much as possible (either equal to 0 or to 1) regarding transformations that leave invariant the tetrad metric in a tetrad system of references. Bringing a tetrad in canonical form is a relevant step in the tackling of the equivalence problem between two spacetime metrics (solutions to Einstein's equations).<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/203425-Tetrads-And-Weyl-Scalars-In-Canonical-Form">blog post on MaplePrimes</A>.<img src="/view.aspx?si=154160/theoreticalphysics.jpg" alt="Tetrads and Weyl scalars in canonical form" align="left"/>This presentation is about the computation of a canonical form of a tetrad, so that, generally speaking (skipping a technical description) the Weyl scalars are fixed as much as possible (either equal to 0 or to 1) regarding transformations that leave invariant the tetrad metric in a tetrad system of references. Bringing a tetrad in canonical form is a relevant step in the tackling of the equivalence problem between two spacetime metrics (solutions to Einstein's equations).<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/203425-Tetrads-And-Weyl-Scalars-In-Canonical-Form">blog post on MaplePrimes</A>.154160Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabExact solutions to Einstein's equations
http://www.maplesoft.com/applications/view.aspx?SID=154161&ref=Feed
The Maple database of solutions to Einstein’s equations, constructed digitizing the solutions found in the book “Exact Solutions of Einstein's Field Equations” by Stephani et al. is presented.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/201548-Exact-Solutions-To-Einsteins-Equations">blog post on MaplePrimes</A>.<img src="/view.aspx?si=154161/Einstein.jpg" alt="Exact solutions to Einstein's equations" align="left"/>The Maple database of solutions to Einstein’s equations, constructed digitizing the solutions found in the book “Exact Solutions of Einstein's Field Equations” by Stephani et al. is presented.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/201548-Exact-Solutions-To-Einsteins-Equations">blog post on MaplePrimes</A>.154161Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabMathematicalFunctions:-Sequences
http://www.maplesoft.com/applications/view.aspx?SID=154162&ref=Feed
In this presentation, the <A HREF="/support/help/Maple/view.aspx?path=MathematicalFunctions/Sequences/Nops">MathematicalFunctions:-Sequences package</A>, to add, multiply, differentiate, or map operations over the elements of symbolic sequences (i.e. sequences where the number of elements of the sequence is not known, just represented by a symbol), is presented.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/201103-MathematicalFunctionsSequences">blog post on MaplePrimes</A>.<img src="/applications/images/app_image_blank_lg.jpg" alt="MathematicalFunctions:-Sequences" align="left"/>In this presentation, the <A HREF="/support/help/Maple/view.aspx?path=MathematicalFunctions/Sequences/Nops">MathematicalFunctions:-Sequences package</A>, to add, multiply, differentiate, or map operations over the elements of symbolic sequences (i.e. sequences where the number of elements of the sequence is not known, just represented by a symbol), is presented.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/201103-MathematicalFunctionsSequences">blog post on MaplePrimes</A>.154162Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabGeneral Relativity using Computer Algebra
http://www.maplesoft.com/applications/view.aspx?SID=154163&ref=Feed
This presentation illustrates the use of the functionality of the Physics package for General Relativity in tackling part of the computations of a paper in General Relativity from 2013, mainly about computing a complicated tensorial expression, calculating its trace, then the related traceless expression and finally an exact solution to the corresponding system of nonlinear differential equations.
<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/200192-General-Relativity-Using-Computer-Algebra">blog post on MaplePrimes</A>.<img src="/view.aspx?si=154163/theoreticalphysics.jpg" alt="General Relativity using Computer Algebra" align="left"/>This presentation illustrates the use of the functionality of the Physics package for General Relativity in tackling part of the computations of a paper in General Relativity from 2013, mainly about computing a complicated tensorial expression, calculating its trace, then the related traceless expression and finally an exact solution to the corresponding system of nonlinear differential equations.
<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/200192-General-Relativity-Using-Computer-Algebra">blog post on MaplePrimes</A>.154163Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabODEs, PDEs and Special Functions
http://www.maplesoft.com/applications/view.aspx?SID=154164&ref=Feed
This presentation illustrates the Maple capabilities for studying and solving ODEs and PDEs, implemented within the <A HREF="/support/help/Maple/view.aspx?path=DEtools">DEtools</A> and <A HREF="/support/help/Maple/view.aspx?path=PDEtools">PDEtools</A> packages, as well as getting information about and working with Special functions of the mathematical language, implemented within the <A HREF="/support/help/Maple/view.aspx?path=FunctionAdvisor">FunctionAdvisor</A>, the conversion network for mathematical functions and the <A HREF="/support/help/Maple/view.aspx?path=MathematicalFunctions">MathematicalFunctions</A> package.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/149877-ODEs-PDEs-And-Special-Functions">blog post on MaplePrimes</A>.<img src="/applications/images/app_image_blank_lg.jpg" alt="ODEs, PDEs and Special Functions" align="left"/>This presentation illustrates the Maple capabilities for studying and solving ODEs and PDEs, implemented within the <A HREF="/support/help/Maple/view.aspx?path=DEtools">DEtools</A> and <A HREF="/support/help/Maple/view.aspx?path=PDEtools">PDEtools</A> packages, as well as getting information about and working with Special functions of the mathematical language, implemented within the <A HREF="/support/help/Maple/view.aspx?path=FunctionAdvisor">FunctionAdvisor</A>, the conversion network for mathematical functions and the <A HREF="/support/help/Maple/view.aspx?path=MathematicalFunctions">MathematicalFunctions</A> package.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/149877-ODEs-PDEs-And-Special-Functions">blog post on MaplePrimes</A>.154164Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabODEs, PDE solutions: when are they "general"?
http://www.maplesoft.com/applications/view.aspx?SID=154165&ref=Feed
This presentation discusses the concept of “general solution” of a Partial Differential Equation, or a system of them, possibly including ODEs and/or algebraic equations, and shows how to tell whether a solution returned by Maple’s <A HREF="/support/help/Maple/view.aspx?path=pdsolve">pdsolve</A> is or not a general (as opposed to particular) solution.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/204437-PDE-Solutions-When-Are-They-general">blog post on MaplePrimes</A>.<img src="/applications/images/app_image_blank_lg.jpg" alt="ODEs, PDE solutions: when are they "general"?" align="left"/>This presentation discusses the concept of “general solution” of a Partial Differential Equation, or a system of them, possibly including ODEs and/or algebraic equations, and shows how to tell whether a solution returned by Maple’s <A HREF="/support/help/Maple/view.aspx?path=pdsolve">pdsolve</A> is or not a general (as opposed to particular) solution.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/204437-PDE-Solutions-When-Are-They-general">blog post on MaplePrimes</A>.154165Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-TerrabFactorizing with non-commutative variables
http://www.maplesoft.com/applications/view.aspx?SID=154166&ref=Feed
New capabilities for factorizing expressions involving noncommutative variables are presented and illustrated with a set of examples.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/201368-New-Factorizing-With-Noncommutative-Variables">blog post on MaplePrimes</A>.<img src="/applications/images/app_image_blank_lg.jpg" alt="Factorizing with non-commutative variables" align="left"/>New capabilities for factorizing expressions involving noncommutative variables are presented and illustrated with a set of examples.<BR><BR>
This application is also the subject of a <A HREF="http://www.mapleprimes.com/posts/201368-New-Factorizing-With-Noncommutative-Variables">blog post on MaplePrimes</A>.154166Fri, 30 Sep 2016 04:00:00 ZDr. Edgardo Cheb-TerrabDr. Edgardo Cheb-Terrab